# CHARACTERIZATION OF THE CHEMICAL BEHAVIOR OF A DBD WIRE-CYLINDER REACTOR FOR NO<sub>X</sub> REMOVAL. DETERMINATION OF REACTIONAL PATHWAYS BY ISOTOPIC LABELING

A. VINCENT, F. DAOU, and J. AMOUROUX

Laboratoire de Génie des Procédés Plasmas et Traitements de Surfaces Université Pierre et Marie CURIE (Paris VI) ENSCP – 11, rue Pierre et Marie CURIE 75231 PARIS cedex 05 - France

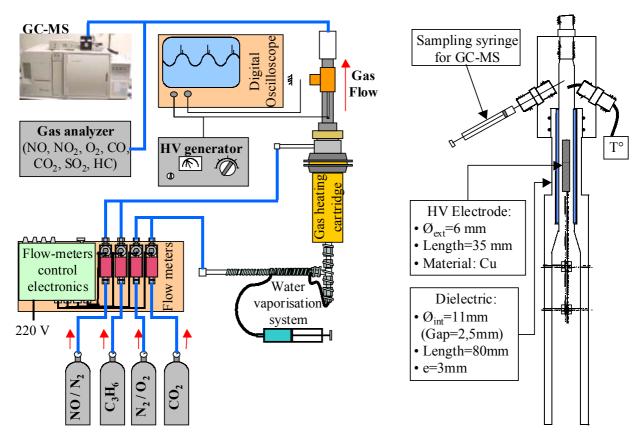
## **ABSTRACT:**

The aim of this work is to determine the chemical reactivity of the DBD wire-cylinder reactor in order to control the  $NO_x$  removal in a mixture of gases representing exhaust engine gases. Therefore we will qualify and quantify the major by-products of the treatment of an  $O_2$ (10%),  $CO_2$  (10%),  $H_2O$  (5.4%),  $C_3H_6$  (1000ppmv), NO (1000ppmv) and  $N_2$  (balance) mixture at atmospheric pressure and 100°C. We can observe the presence of VOC's like aldehyde (especially formaldehyde, acetaldehyde and propanal) and of R-NOx (particularly CH<sub>3</sub>-O- $NO_2$ , nitromethane and  $C_2H_5$ -O- $NO_2$ ). We can also notice the increase of these by-products with the increase of the energy density. Finally, we demonstrate that the creation of R- $NO_x$  is due to the oxidation of  $C_3H_6$  fragments by  $O_2$  and not by  $CO_2$  contrary to acetaldehyde and propanal.

**Keywords:** DBD, NO<sub>x</sub> removal, Wire-cylinder, GC-MS, reactional mechanisms, isotopic labeling

#### **1. INTRODUCTION**

 $NO_x$  emissions are a major preoccupation in pollution control. It imposes new processes developments. Corona discharge treatment can efficiently be applied to polluted gases in order to reduce the undesirable emissions<sup>[1,2,3]</sup>. Many applications of DC and AC corona discharge for  $NO_x$  conversion are well known, using point-to-plane<sup>[3,4,5]</sup>, multipoint-to-plane<sup>[4,6,7]</sup> or wire-cylinder <sup>[8,9]</sup> reactors. This removal of  $NO_x$  by dielectric barrier discharge treatment can be occurred by oxidation of NO in  $NO_2$  and formation of nitric acid by reaction with water, reduction or trapping by hydrocarbons. That's the reason we analyze by-products


contained in treated gas by GC-MS, allowing the identification and the quantification of produced carbon compounds. This analyze needs a previous electrical qualification based on voltage, current, charge and power measurements with a digital oscilloscope.

The analyze of a plasma treated  $O_2$  (10%),  $CO_2$  (10%),  $H_2O$  (5.4%),  $C_3H_6$  (1000ppmv), NO (1000ppmv) and  $N_2$  (balance) gas mixture is presented in this paper. The reactor is a wire-cylinder dielectric barrier discharge one and is connected to an AC high voltage generator.

The main by-products will be quantified depending on energy density injected in the plasma. After it, we will determine the reactional pathways by substituting introduced  $O_2$  by its  ${}^{18}O_2$  isotope. The mass spectrum of the different species created by oxidation from  $O_2$  will indeed be modified. Then we will be able to understand the chemical behavior of the DBD reactor.

# 2. EXPERIMENTAL SET-UP

As shown in Fig. 1 and Fig. 2, the reactor is a cylindrical dielectric pipe (aluminio-silicate pipe:  $Ø_{int}=15$ mm /  $Ø_{ext}=21$ mm + glass pipe within aluminio-silicate pipe:  $Ø_{int}=11$ mm /  $Ø_{ext}$ =15mm). The high voltage electrode is a 6mm diameter copper screw (gap=2.5mm) and the grounded electrode is a sheet of copper. Energy is supplied by a "Calvatron SG2" high voltage 44kHz AC supply (applied voltage is between 12 and 16kV peak to peak). Electrical characterization is made measuring voltage (using a high voltage 1:1000 probe), current, power, electric charge, frequency and pulse time by a 500MHz digital oscilloscope (LeCroy LT 342). The reactor is fed with a gas mixture at atmospheric pressure. Each gas (except water vapor) is introduced in the reactor by a mass flow meter.  $O_2$  (10%),  $CO_2$  (10%) and  $N_2$ (balance) are introduced in a heating cartridge while NO (1000ppmv) and  $C_3H_6$  (1000ppmv) are introduced after it. We also avoid NO and C<sub>3</sub>H<sub>6</sub> transformation on the inner walls of the cartridge. A motorized syringe pusher introduces H<sub>2</sub>O (5.4%) in a heated 1/8" diameter and 2 meters long stainless steel pipe. Vaporized water is then introduced in heated gas. The total gas flow is about 12.9 slpm (slpm means L.min<sup>-1</sup> in normalized conditions: atmospheric pressure and 0°C) or 17.4L.min<sup>-1</sup> at 100°C (experimental temperature). Gas mixture temperature is measured by a thermocouple at 3 centimeters after the discharge zone.



*Fig. 1. Experimental set-up of the wire-cylinder reactor, gas feeding system and analysis apparatus* 

*Fig. 2.* Detailed schema of the wire-cylinder reactor

# Gas analysis apparatus:

The treated gas flows from the reactor to the different analysis apparatus through a heated 1/4" stainless steel pipe. The in-line analyzers are:

- GC-MS (Gas Chromatography coupled with a Mass Spectrometer): it allows the identification (sensitivity: 1 to 10 ppm depending on the compound) and the quantification ( $\pm$  5% after calibration) of the different hydrocarbons to provide the carbon mass balance. The chromatographic column is a Chrompack PoraPlotQ (25m-0.32mm-10µm, divinyl-benzen polystyren). Gas introduction is made with a 100µl 6 ways gas sampler, carrier gas is He (pressure: 0.3 kg.cm<sup>-2</sup>).

- QUINTOX Gas Analyzer (measuring NO, NO<sub>2</sub>, O<sub>2</sub>, CO<sub>2</sub>, CO, SO<sub>2</sub> quantities): performances are indicated in the Table I.

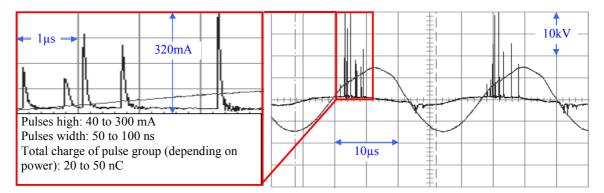
| Gas measurement   | Range         | Accuracy                                                                   | Resolution |  |
|-------------------|---------------|----------------------------------------------------------------------------|------------|--|
| O <sub>2</sub>    | 0-25 %        | 0.1 à 0.2 %                                                                | 0.1 %      |  |
| СО                | 0-10000 ppm   | 20 ppm : [CO] < 400 ppm<br>5 % : [CO] < 2000 ppm<br>10 % : [CO] > 2000 ppm | 1 ppm      |  |
|                   | 0.1-10 %      | +/- 5 %                                                                    | 0.01 %     |  |
| NO                | 0-5000 ppm    | 5 ppm : [NO] < 100 ppm<br>5 % : [NO] > 100 ppm                             | 1 ppm      |  |
| NO <sub>2</sub>   | 0-1000 ppm    | +/- 5 ppm                                                                  | 1 ppm      |  |
| SO <sub>2</sub>   | 0-5000 ppm    | 5 %                                                                        | 1 ppm      |  |
| CO <sub>2</sub>   | 0-fuel value  | +/- 0.3 %                                                                  | 0.1 %      |  |
| Hydrocarbons (HC) | 0-5 % Méthane | 5 %                                                                        | 0.01 %     |  |

Table I: Utilization range, accuracy and resolution of the gas analyzer

- DRÄGER Colorimetric detector tubes (measuring NO +  $NO_2$  or CO quantity): the utilization range and precision are:

 $NO + NO_2$ : 50 – 2500 ppm ± 10%

 $CO: 25 - 1000 \text{ ppm} \pm 5\%$ 

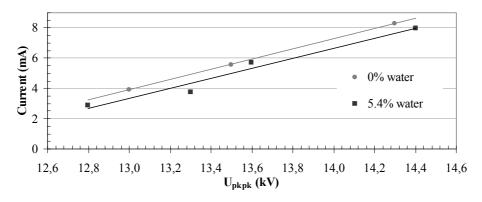

 $NO_x$  analysis with gas analyzer and colorimetric detector were validated after measurements of  $NO_x$  at the exit of a  $NO/N_2$  gas bottle (NO: 1800ppmv) and after a 1:1 dilution with  $N_2$  using the mass flow-meters.

## **3. EXPERIMENTAL RESULTS – DISCUSSION**

# **3.1. Electrical characterization of the reactor:**

Electrical characterization of a reactor<sup>[9,10]</sup> is the prerequisite to the chemical study. It is an important step in energy balance determination and control of energy consumption<sup>[11]</sup>. Measuring voltage, current, frequency and charge has provided the electrical behavior of the reactor. A previous study<sup>[9]</sup> has been carried with various physical parameters (change of the material of electrode and dielectric, the gap, the gas flow or heating and hydration).

For this work, where only hydration is a variable parameter, the electrical measurements are summed up in the Fig. 3 and Table II.




**Fig. 3.** Oscillogram obtained for the treatment of the  $O_2$  (10%),  $CO_2$  (10%),  $H_2O$  (5.4%),  $C_3H_6$  (1000ppmv), NO (1000ppmv) and  $N_2$  (balance) gas mixture ( $U_{pkpk}=14.5kV$ , frequency=44kHz, T=180°C, flow=12.9 slpm)

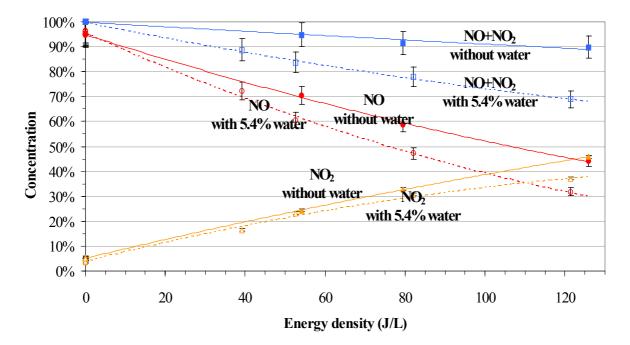
**Table II.** Different electrical measures obtained for the treatment of the  $O_2$  (10%),  $CO_2$  (10%),  $H_2O$  (0 or 5.4%),  $C_3H_6$  (1000ppmv), NO (1000ppmv) and  $N_2$  (balance) gas mixture (T=100 to 180°C depending on discharge power, flow=12.9 slpm) at various voltages

|                                                                     | 0% water |      |      | 5.4% water |      |      |      |
|---------------------------------------------------------------------|----------|------|------|------------|------|------|------|
| Voltage (kV <sub>pkpk</sub> )                                       | 13.0     | 13.5 | 14.3 | 12.8       | 13.3 | 13.6 | 14.4 |
| Frequency (kHz)                                                     |          | 44.0 |      | 44.0       |      |      |      |
| Intensity (mA)                                                      | 3.9      | 5.5  | 3.9  | 2.9        | 3.7  | 5.7  | 8.0  |
| Power (W)                                                           | 18       | 26   | 42   | 13         | 18   | 27   | 41   |
| Energy density (J/L)                                                | 54       | 79   | 126  | 39         | 53   | 82   | 122  |
| Charge of the pulses group (nC)                                     | 27       | 38   | 51   | 20         | 30   | 41   |      |
| Elementary charges / second (10 <sup>-6</sup> mol.s <sup>-1</sup> ) | 0.45     | 0.62 | 0.84 | 0.32       | 0.50 | 0.67 |      |

The usable voltage range is here 12.8 to  $14.4kV_{pkpk}$ . It allows the achievement of a corona discharge mode with stable multiple impulsions adapted to NO<sub>x</sub> removal. The current versus energy density diagram has been both determined under wet and dry conditions (Fig. 4). The temperature conditions were not constant for the different measures because the gas is heated by the discharge proportionally to its power.



**Fig. 4.** Current vs. voltage curve obtained for the treatment of the  $O_2$  (10%),  $CO_2$  (10%),  $H_2O$  (0 or 5.4%),  $C_3H_6$  (1000ppmv), NO (1000ppmv) and  $N_2$  (balance) gas mixture (T=100 to 180°C depending on discharge power, flow=12.9 slpm)


We can observe that hydration has a weak influence on the current vs. voltage characterization. Nevertheless, hydration decreases a bit the breakdown voltage. We should notice that current measured is an average current: the current of the pulses represents only a part of it. The interesting part of current is the pulse's one which is due to the electron crossing the gap and creating excited, ionized and dissociated species. Those species are responsible of the chemical activity of the plasma through the reaction with neutral molecules and create a great variety of hydrocarbon compounds and R-NO<sub>x</sub>.

## 3.2. Characterization of the depollution treatment: analysis of the treated gas

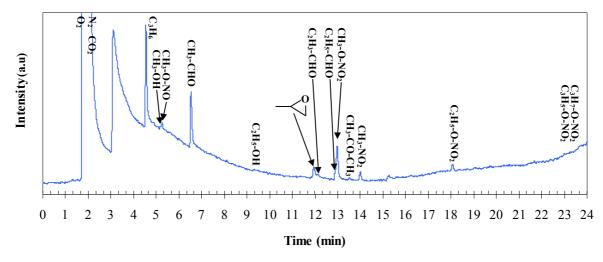
Analyses were conducted at different applied power to qualify the depollution behavior of the reactor versus energy density. Before each analysis (simultaneously made by GC-MS and gas analyzer), a measure was made with the discharge off. Two series of analyses were conducted: one without water vapor in the gas mixture, another with 5.4% of water vapor.

• NO<sub>x</sub> measurements with gas analyzer:

The measures of NO and  $NO_2$  concentrations after the treatment of the gas mixture without water vapor and with 5.4% of water vapor are presented in Fig. 5.



**Fig. 5.**  $NO_x$  concentration vs. energy density of the dry or hydrated  $O_2$  (10%),  $CO_2$  (10%),  $H_2O$  (0 or 5.4%),  $C_3H_6$  (1000ppmv), NO (1000ppmv) and  $N_2$  (balance) gas mixture (T=100 to 180°C depending on discharge power, flow=12.9 slpm)


First, we can notice that NO concentration decreases with energy density increase. This decrease of NO is linked to the  $NO_2$  increase through oxidation processes. The

oxidant vector can be  $O_2$  (giving O in the discharge)<sup>[12]</sup>,  $CO_2$  (giving O and CO)<sup>[13,14]</sup> and  $H_2O$  (giving OH)<sup>[15,16,17]</sup>. Those species are present in excess in the mixture (about 100 to 1 NO molecule). But a significant part of NO "disappears", being trapped by  $C_3H_6$  and its fragments giving R-NO<sub>x</sub><sup>[18]</sup>, adsorbed on the outlet pipes or reduced to N<sub>2</sub>+O<sub>2</sub>. R-NO<sub>x</sub> formation will be presented in the following section.

Another important information of those analyses is the role of water in the mixture. It strongly increases the  $NO_x$  removal (30% vs. 10%). This can be partially due to the formation of  $HNO_3$  by reaction with water vapor through OH formation but we can also connect this result to the decrease of voltage and power necessary to the gas treatment: the water makes the discharge easier to obtain.

• VOC and R-NO<sub>x</sub> measurements with GC-MS

GC-MS was used to determine the different carbon by-products (under  $C_4$ ) contained in the gas phase after plasma treatment. Two families of compounds, all issued from  $C_3H_6$ fragmentation in the discharge has been identified: VOC and R-NO<sub>x</sub>. VOC are essentially composed of aldehydes (formaldehyde, acetaldehyde, propanal...) but there are also weak quantities of propenal, acetone, methanol and ethanol (Fig. 6).



 $\rightarrow^{0}$  represents the propylene oxide and will be noted CH<sub>3</sub>-HCOCH<sub>2</sub>.

**Fig. 6.** Chromatogram of a plasma treated  $O_2$  (10%),  $CO_2$  (10%),  $H_2O$  (5.4%),  $C_3H_6$  (1000ppmv), NO (1000ppmv) and  $N_2$  (balance) gas mixture ( $T=140^{\circ}C$ , flow=12.9 slpm)

The majority of R-NO<sub>x</sub> observed is based on a CH<sub>3</sub> function (CH<sub>3</sub>-O-NO, CH<sub>3</sub>-O-NO<sub>2</sub> and CH<sub>3</sub>-NO<sub>2</sub>) but there are also some quantities of C<sub>2</sub> and C<sub>3</sub> R-NO<sub>x</sub> (C<sub>2</sub>H<sub>5</sub>-O-NO<sub>2</sub>, C<sub>3</sub>H<sub>5</sub>-O-NO<sub>2</sub> and C<sub>3</sub>H<sub>7</sub>-O-NO<sub>2</sub>). Absolute quantities of C<sub>3</sub>H<sub>6</sub> (introduced or remaining after the plasma treatment) have been determined. Most of the other by-products are not stable enough (excepted nitromethane) to be proposed in fine chemicals dealer catalogs,

so only relative quantification has been carried (comparison of the peak areas between two chromatograms at different energy density).

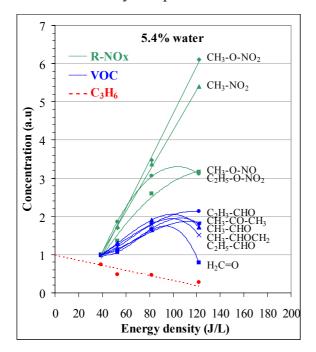
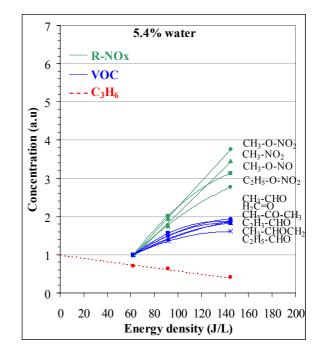




Fig. 7.1 and Fig. 7.2 indicates the relative concentration vs. energy density of the different analyzed species.

**Fig.** 7.1. Quantitative variation of  $C_3H_6$ and by-products depending on energy density for an  $O_2$  (10%),  $CO_2$  (10%),  $H_2O$ (5.4%),  $C_3H_6$  (1000ppmv), NO (1000ppmv) and  $N_2$  (balance) gas mixture (T=100 to 180°C depending on discharge power, flow=12.9 slpm)



**Fig.** 7.2. Quantitative variation of  $C_3H_6$ and by-products depending on energy density for an  $O_2$  (10%),  $CO_2$  (10%),  $C_3H_6$ (1000ppmv), NO (1000ppmv) and  $N_2$ (balance) dry gas mixture (T=100 to 180°C depending on discharge power, flow=12.9 slpm)

In each case, the first value of concentration is arbitrary set to 1. The other concentrations are also calculated relatively to this first measure. In the case  $C_3H_6$ , it has been obtained at 0 J.L<sup>-1</sup> because propylene is introduced in the mixture before the treatment. For the other compounds, the initial value has been carried at the minimal energy to trigger the discharge.

We can notice that  $R-NO_x$  quantity greatly increases with energy density while VOC quantity increases and stagnate with energy density. There are also two typical behaviors depending on chemical family:  $R-NO_x$  or VOC. Those behaviors are quite the same with or without water vapor except for the energy density scale. If we contract the scale of Fig. 7.2 from 145 to 85 J.L<sup>-1</sup>, both figures can be overlapped. The presence of water vapor seems to reduce the energy density needed to treat as well the gas mixture. In other words, at constant energy density, the treatment is more efficient with water vapor.

#### 3.3. Determination of reactional mechanism by isotopic labeling

Once we have determinated the reactivity in the reactor vs. energy density, we are interested in understanding the reactional mechanism occurring in the by-products creation. First we can propose different mechanism using the introduced species and the supposed radicals or fragments produced in the discharge. Then, we have substituted one of the introduced species by its isotope and we determine with GC-MS the changes in by-products. We also can determine the reactional pathway.

In our case, we could see that by-products are all created by oxidation of  $C_3H_6$  or its fragments. Then we substituted  $O_2$  (<sup>16</sup>O-<sup>16</sup>O) by labeled  $O_2$  (<sup>18</sup>O-<sup>18</sup>O). We also can determinate if O in molecules comes from  $O_2$  (<sup>18</sup>O labeled by-product), from  $CO_2$  (unlabeled by-product) or from the both (partially <sup>18</sup>O labeled by-product). For example, we'll take the case of acetone. It can be produced by the attack of  $C_3H_6$  by  $O_2$  (100% labeled CH<sub>3</sub>-CO-CH<sub>3</sub>). It can also be produced by the attack of  $C_3H_6$  by O giving partially labeled acetone. O atoms comes indeed from  $O_2$  and  $CO_2$  fragmentation in the discharge:  $O_2$  producing <sup>18</sup>O while  $CO_2$  produces <sup>16</sup>O, both <sup>16</sup>O and <sup>18</sup>O atoms are present in the mixture. Finally, acetone can be produced by binding of CO with two CH<sub>3</sub> radicals (coming from  $C_3H_6$  fragmentation) giving a totally unlabeled molecule.

The determination of the reactional mechanisms requires the knowledge of the byproducts mass spectrum and its possible changes in labeling. For example, in the CH<sub>3</sub>-O-NO<sub>2</sub> mass spectrum, the m/z=15, 29, 46 & 76 peaks are representatives of CH<sub>3</sub>, CH-O, NO<sub>2</sub>, and CH<sub>3</sub>-NO<sub>3</sub> fragments. In the case of an <sup>18</sup>O<sub>2</sub> labeled molecule, m/z=15 will be unchanged while m/z=29, 46, 76 can be changed in m/z=31; 48 or 50; 78, 80 or 82 for CH-<sup>18</sup>O, N<sup>16</sup>O<sup>18</sup>O or N<sup>18</sup>O<sup>18</sup>O, and CH<sub>3</sub>-N<sup>16</sup>O<sup>16</sup>O<sup>18</sup>O, CH<sub>3</sub>-N<sup>16</sup>O<sup>18</sup>O<sup>18</sup>O or CH<sub>3</sub>-N<sup>18</sup>O<sup>18</sup>O<sup>18</sup>O fragments. The ratio between the different peak areas gives the proportion of each isotope produced by the discharge. Fig. 8.1 to Fig. 8.4 presents the different peaks for these particular m/z.

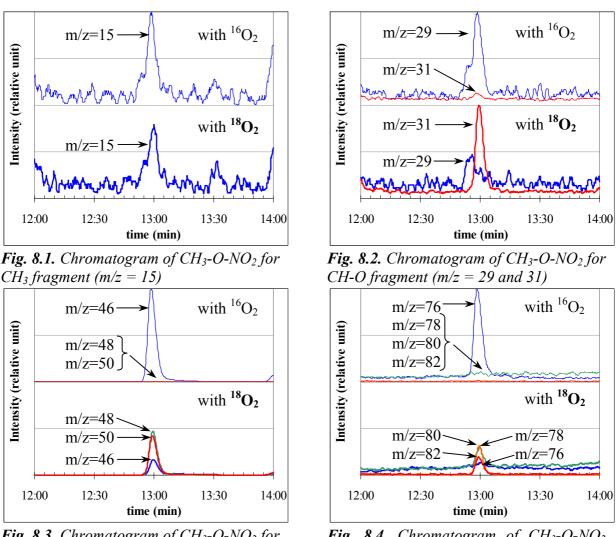
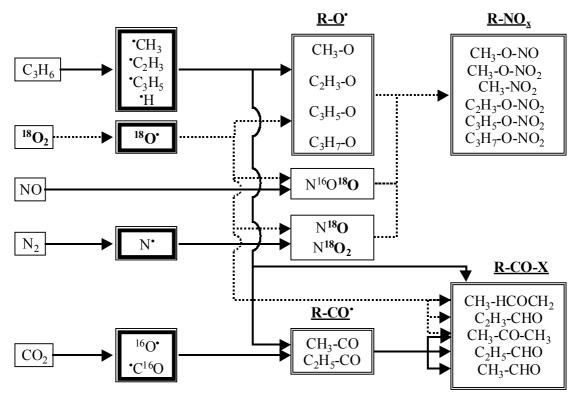



Fig. 8.3. Chromatogram of  $CH_3$ -O-NO<sub>2</sub> for NO<sub>2</sub> fragment (m/z = 46, 48 and 50)

*Fig.* 8.4. *Chromatogram of*  $CH_3$ -*O*-*NO*<sub>2</sub> *native peak* (m/z = 76, 78, 80 *and* 82)

The analysis of Fig. 8.2 indicates that <sup>18</sup>O labeled mixture totally changes the m/z=29 into m/z=31 peak (the remaining m/z=29 peak on the lower curve is due to the 12'55" propanal peak while CH<sub>3</sub>-O-NO<sub>2</sub> peak is centered on 13'00"). Then the O atom between CH<sub>3</sub> and NO<sub>2</sub> functions is due to the oxidation of CH<sub>3</sub> radicals by <sup>18</sup>O<sub>2</sub> initially introduced. The Fig. 8.3 indicates that NO<sub>2</sub> function contains about 10% of N<sup>16</sup>O<sup>16</sup>O, 50% of N<sup>16</sup>O<sup>18</sup>O and 40% of N<sup>18</sup>O<sup>18</sup>O (calculated by the peak area ratio balanced with noise level). Those values are corroborated by Fig. 8.4 that indicates the absence of m/z=76 peak, the small m/z=78 peak and quasi-equivalence of m/z=80 and m/z=82 peaks. We can notice that a great part of NO<sub>2</sub> trapped in this molecule doesn't come from the native NO (which is unlabeled) but was produced from N<sub>2</sub> and <sup>18</sup>O<sub>2</sub> by the discharge. The other part is essentially due to oxidation of native NO by <sup>18</sup>O and caught by CH<sub>3</sub>-<sup>18</sup>O (created from CH<sub>3</sub> and <sup>18</sup>O<sub>2</sub>). CH<sub>3</sub>-<sup>18</sup>O-N<sup>16</sup>O<sup>16</sup>O

Proceeding with the same methodology allows us to determine the isotopic composition of the different by-products. These compositions are summed up in the Table III.


| Specie                                                                                               | Fragment or molecu<br>isotope                                                                                                              | ıle | Proportion        | Source of O                   |  |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------|-------------------------------|--|
| CH <sub>3</sub> -CHO                                                                                 | СН <sub>3</sub> -СН <sup>16</sup> О<br>СН <sub>3</sub> -СН <sup>18</sup> О                                                                 | *   | <b>95%</b><br>5%  | CO (from CO <sub>2</sub> )    |  |
| CH <sub>3</sub> -HCOCH <sub>2</sub>                                                                  | CH <sub>3</sub> -CH <sup>16</sup> OCH <sub>2</sub>                                                                                         |     | 15%               | $O$ (from $O_2$ )             |  |
|                                                                                                      | CH <sub>3</sub> -CH <sup>18</sup> OCH <sub>2</sub>                                                                                         | *   | 85%               | 0 (110111 02)                 |  |
| C <sub>2</sub> H <sub>3</sub> -CHO                                                                   | $\frac{C_{2}H_{3}-CH^{16}O}{C_{2}H_{3}-CH^{18}O}$                                                                                          | *   | 25%<br>75%        | O (from O <sub>2</sub> )      |  |
| C <sub>2</sub> H <sub>5</sub> -CHO                                                                   | C <sub>2</sub> H <sub>5</sub> -CH <sup>16</sup> O                                                                                          |     | 80%               | $CO$ (from $CO_2$ )           |  |
|                                                                                                      | C <sub>2</sub> H <sub>5</sub> -CH <sup>18</sup> O<br>CH <sub>3</sub> -C <sup>16</sup> O-CH <sub>3</sub>                                    | *   | 20%               |                               |  |
| CH <sub>3</sub> -CO-CH <sub>3</sub>                                                                  | CH <sub>3</sub> -C <sup>18</sup> O-CH <sub>3</sub>                                                                                         | *   | 60%               | $O (from O_2 \& CO_2)$        |  |
| CH3-O-NO                                                                                             | $\frac{\text{CH}_{3}\text{-}^{16}\text{O}\text{-N}^{16}\text{O}}{\text{CH}_{3}\text{-}^{18}\text{O}\text{-N}^{16}\text{O}}$                | *   | 13%               | $O(from O) \in NO$            |  |
|                                                                                                      | $\frac{CH_{3}-0-N}{CH_{3}-^{18}O-N^{18}O}$                                                                                                 | *   | <b>60%</b><br>27% | O (from O <sub>2</sub> ) & NO |  |
| CH <sub>3</sub> -O-NO <sub>2</sub>                                                                   | CH <sub>3</sub> - <sup>18</sup> O-N <sup>16</sup> O <sup>16</sup> O                                                                        | *   | 10%               |                               |  |
|                                                                                                      | CH <sub>3</sub> - <sup>18</sup> O-N <sup>16</sup> O <sup>18</sup> O<br>CH <sub>3</sub> - <sup>18</sup> O-N <sup>18</sup> O <sup>18</sup> O | *   | 50%<br>40%        | O (from $O_2$ ) & NO          |  |
| CH <sub>3</sub> -NO <sub>2</sub>                                                                     | CH <sub>3</sub> -N <sup>16</sup> O <sup>16</sup> O                                                                                         |     | 20%               |                               |  |
|                                                                                                      | CH <sub>3</sub> -N <sup>16</sup> O <sup>18</sup> O                                                                                         | *   | 55%               | O (from O <sub>2</sub> ) & NO |  |
|                                                                                                      | CH <sub>3</sub> -N <sup>18</sup> O <sup>18</sup> O<br>N <sup>16</sup> O <sup>16</sup> O                                                    | *   | 25%<br>15%        |                               |  |
| C <sub>2</sub> H <sub>5</sub> -O-NO <sub>2</sub><br>C <sub>3</sub> H <sub>5</sub> -O-NO <sub>2</sub> | N <sup>16</sup> O <sup>18</sup> O                                                                                                          | *   | 80%               | O (from O <sub>2</sub> ) & NO |  |
| C <sub>3</sub> H <sub>7</sub> -O-NO <sub>2</sub>                                                     | N <sup>18</sup> O <sup>18</sup> O                                                                                                          | *   | 5%                |                               |  |

\* signals an <sup>18</sup>O containing molecule

**Table III.** Composition of the by-products obtained for the treatment of an  ${}^{18}O_2$  (10%),  $CO_2$  (10%),  $H_2O$  (5.4%),  $C_3H_6$  (1000ppmv), NO (1000ppmv) and  $N_2$  (balance) gas mixture (T=140°C, flow=12.9 slpm)

In this table, we couldn't indicate the isotopic composition of formaldehyde and alcohol's because the peaks are too weak or too noisy to be interpreted. We didn't present the  $CO_2$  labeling too because its m/z=44 peak was saturated but we could measure an increase of the m/z=48 peak ( $C^{18}O^{18}O$ ) in a rate of 1:40, illustrating the exchange of O atoms between  $CO_2$  and  $O_2$ .

The main R-NOx emitted (CH<sub>3</sub>-O-NO, CH<sub>3</sub>-O-NO<sub>2</sub> and CH<sub>3</sub>-NO<sub>2</sub>) are essentially produced by oxidation of NO by O (itself essentially due to  $O_2$ ) but it contains a significant part of NO<sub>2</sub> created from N<sub>2</sub> & O<sub>2</sub> in the discharge. For the main VOC emitted (acetaldehyde, propanal and propylene oxide) the two first are essentially produced by oxidation of HC fragments with CO while CH<sub>3</sub>-HCOCH<sub>2</sub> is directly formed by oxidation of C<sub>3</sub>H<sub>6</sub> with O (from O<sub>2</sub> and CO<sub>2</sub>). The Fig. 9 gives a summary of the main results concerning the origin of the different by-products:



*.....Indicates the <sup>18</sup>O pathways* 

**Fig. 9.** Determination by isotopic labeling  $(O_2 \rightarrow {}^{18}O_2)$  of reactional pathways conducting to the formation of the VOC's and R-NO<sub>x</sub>

# 4. CONCLUSION

This study was performed with two goals: qualify and quantify the behavior of the wirecylinder as a chemical reactor by measuring the by-products formation versus energy density and determining the reactional pathways conducting to it. The understanding of this chemistry requires knowing the electrical behavior of the reactor. Then, we have measured the utilization range of voltage (about 12.5 to  $14.5 \text{kV}_{\text{pkpk}}$ ), the voltage frequency (45kHz), the current of the pulses (40 to 300mA) and the pulses charge (20 to 50nC/period). We could measure the evolution of  $NO_x$  concentration versus energy density and we could notice that the presence of water vapor in the mixture increases the  $NO_x$  removal from 10% to 30%. In the same time, we could measure an increase of R-NO<sub>x</sub> and VOC quantity in by-products. However, the increasing of R-NOx quantity with power is greater than VOC's.

The isotopic labeling of the introduced  $O_2$  with  ${}^{18}O_2$  has improved the understanding of reactional mechanisms and especially oxidation mechanisms with O atoms (due to  $O_2$  and  $CO_2$  fragmentation in the discharge) and with CO (due to  $CO_2$ ). Then, we could demonstrate the prior role of  $O_2$  in NO oxidation and R-NO<sub>x</sub> formation, the role of CO in the formation of the main VOC's (acetaldehyde and propanal) and the exchange of O atoms between  $O_2$  and  $CO_2$ .

#### AKNOWLEDGMENTS

Authors acknowledge ARC GIE-PSA Peugeot-Citroën-RENAULT-ECODEV and Ministère de la Recherche for financial support and M-F. Gonnord for the development of GC-MS analysis.

# REFERENCES

[1] R.S. Sigmond, M. Goldman, *Electrical Breakdown and Discharges in Gases* (Part. B), NATO-ASI Series, B89b, Plenum Press (1983)

[2] J.S. Chang, P.A. Lawless, T. Yamamoto, IEEE Transactions on Plasma Science, Vol. 19, n°6 (1991), 1152-1165

[3] S. Robert, E. Franke, J. Amouroux, "Polluted gases treatment in a corona discharge plasma reactor", Progress in plasma processing of materials (1999)

[4] F. Daou, A. Vincent, S. Robert, E. Francke, S. Cavadias & J. Amouroux, "*Removal of nitric oxide by point to plane and multipoint to plane DBD in exhaust vehicle gases*", Proceedings of 15<sup>th</sup> International Symposium on Plasma Chemistry, **Vol. 7** (2001), 3023-3029

[5] H. Suhr, G. Weddigen, "*Reduction of nitric oxide in flue gases by point to plane corona discharge with catalytical coatings on the plane electrode*", Combust. Sci. and Tech., **Vol. 72** (1990), 101-115

[6] K. Takaki, M.A. Jani, T. Fujiwara, "*Removal of nitric oxide in flue gases by multipoint to plane dielectric barrier discharge*", IEEE Transactions on Plasma Science, Vol. 27, n°4 (1999), 1137-1145

[7] K. Takaki, T. Fujiwara, "Multipoint barrier discharge process for removal of NOx from diesel engine exhaust", IEEE Transactions on Plasma Science, Vol. 29, n°3 (2001), 518-523

[8] Y.S. Mok, J.H. Kim, I-S. Nam, S.W. Ham, "*Removal of NO and formation of byproducts in a positive-pulsed corona discharge reactor*", Ind. Eng. Chem. Res., Vol. 39 (2000), 3938-3944

[9] A. Vincent, F. Daou, S. Robert, E. Francke, S. Cavadias & J. Amouroux, "*Electrical characterization of DBD wire-cylinder reactor: influence of operating parameters and by-products analysis*", Proceedings of 15<sup>th</sup> International Symposium on Plasma Chemistry, **Vol.** 7 (2001), 3141-3147

[10] E. Francke, S. Robert, J. Amouroux, "*Hydrodynamic and electrical characterization of a corona discharge plasma reactor*", High Temperature Material Processes, Vol. 4, n°1 (2000), 139-150

[11] J-W. Chung, M-H; Cho, B-H. Son, Y-S. Mok, W. Namkung, "Study on reduction of energy consumption in pulsed corona discharge process for NO<sub>x</sub> removal", Plasma chemistry and plasma processing, **Vol. 20**, No. 4 (2000), 495-509

[12] D-J. Kim, Y. Choi, K-S. Kim, "Effects of process variables on  $NO_x$  conversion by pulsed corona discharge process", Plasma chemistry and plasma processing, Vol. 21, No. 4 (2001), 625-650

[13] S.L. Suib, S.L. Brock, M. Marquez, J. Luo, H. Matsumoto, Y. Hayashi, "*Efficient catalytic plasma activation of CO<sub>2</sub>, NO, and H<sub>2</sub>O*", J. Phys. Chem. B, **102** (1998), 9661-9666

[14] J. Luo, S.L. Suib, M. Marquez, Y. Hayashi, H. Matsumoto, "Decomposition of  $NO_x$  with low-temperature plasmas at atmospheric pressure: neat and in presence of oxidants, reductants, water and carbon dioxide, J. Phys. Chem. A, Vol. 102 (1998), 7954-7963

[15] R. Dorai, M.J. Kushner, "Effect of propene on the remediation of  $NO_x$  from engine exhausts", SAE/SP, n° 1999-01-3683, Toronto (1999)

[16] N.M. Donahue, R. Mohrschladt, T.J. Dransfield, J.G. Andersan, "Constraining the mechanism of  $OH + NO_2$  Using Isotopically Labeled Reactants: Experimental evidence for HOONO formation", J. Phys. Chem. B, Vol. 103 (2001), 10999-11006

[17] R. Gasparik, S. Ihara, C. Yamabe, S. Satoh, "Effect of  $CO_2$  and water vapors on  $NO_x$  removal efficiency under conditions of DC corona discharge in cylindrical discharge reactor", Jpn. J. Appl. Phys., Vol. 39 (2000), 306-309

[18] U. Kirchner, V. Scheer, R. Vogt, "FTIR spectroscopic investigation of the mechanism and kinetics of the heterogeneous reactions of NO<sub>2</sub> and HNO<sub>3</sub> with soot", J. Phys. Chem. A, Vol. 104 (2000), 8908-8915